Twisted Exponents and Twisted Frobenius–schur Indicators for Hopf Algebras
نویسنده
چکیده
Classically, the exponent of a group is the least common multiple of the orders of its elements. This notion was generalized by Etingof and Gelaki to the context of Hopf algebras. Kashina, Sommerhäuser and Zhu later observed that there is a strong connection between exponents and Frobenius– Schur indicators. In this paper, we introduce the notion of twisted exponents and show that there is a similar relationship between the twisted exponent and the twisted Frobenius–Schur indicators defined in previous work of the authors. In particular, we exhibit a new formula for the twisted Frobenius– Schur indicators and use it to prove periodicity and rationality statements for the twisted indicators.
منابع مشابه
Twisted Frobenius–schur Indicators for Hopf Algebras
The classical Frobenius–Schur indicators for finite groups are character sums defined for any representation and any integer m ≥ 2. In the familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bu...
متن کاملHopf Automorphisms and Twisted Extensions
We give some applications of a Hopf algebra constructed from a group acting on another Hopf algebra A as Hopf automorphisms, namely Molnar’s smash coproduct Hopf algebra. We find connections between the exponent and Frobenius-Schur indicators of a smash coproduct and the twisted exponents and twisted Frobenius-Schur indicators of the original Hopf algebra A. We study the category of modules of ...
متن کاملFrobenius-Schur Indicator for Categories with Duality
We introduce the Frobenius–Schur indicator for categories with duality to give a category-theoretical understanding of various generalizations of the Frobenius–Schur theorem including that for semisimple quasi-Hopf algebras, weak Hopf C∗-algebras and association schemes. Our framework also clarifies a mechanism of how the “twisted” theory arises from the ordinary case. As a demonstration, we es...
متن کاملCentral Invariants and Frobenius-Schur Indicators for Semisimple Quasi-Hopf Algebras
In this paper, we obtain a canonical central element νH for each semisimple quasiHopf algebraH over an algebraically closed field of char 0 and prove that νH is invariant under gauge transformations. Moreover, if H is a semisimple Hopf algebra or a twisted quantum double of a finite group, then χ(νH) is the Frobenius-Schur Indicator of the irreducible representation which affords the character ...
متن کاملGorenstein global dimensions for Hopf algebra actions
Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra. In this paper, we investigate Gorenstein global dimensions for Hopf algebras and twisted smash product algebras $Astar H$. Results from the literature are generalized.
متن کامل